3.311 \(\int \frac {(b \tan (e+f x))^{5/2}}{(d \sec (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=168 \[ -\frac {b^{5/2} \sqrt {b \tan (e+f x)} \tan ^{-1}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right )}{d f \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)}}+\frac {b^{5/2} \sqrt {b \tan (e+f x)} \tanh ^{-1}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right )}{d f \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)}}-\frac {2 b (b \tan (e+f x))^{3/2}}{3 f (d \sec (e+f x))^{3/2}} \]

[Out]

-b^(5/2)*arctan((b*sin(f*x+e))^(1/2)/b^(1/2))*(b*tan(f*x+e))^(1/2)/d/f/(d*sec(f*x+e))^(1/2)/(b*sin(f*x+e))^(1/
2)+b^(5/2)*arctanh((b*sin(f*x+e))^(1/2)/b^(1/2))*(b*tan(f*x+e))^(1/2)/d/f/(d*sec(f*x+e))^(1/2)/(b*sin(f*x+e))^
(1/2)-2/3*b*(b*tan(f*x+e))^(3/2)/f/(d*sec(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 168, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {2610, 2616, 2564, 329, 298, 203, 206} \[ -\frac {b^{5/2} \sqrt {b \tan (e+f x)} \tan ^{-1}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right )}{d f \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)}}+\frac {b^{5/2} \sqrt {b \tan (e+f x)} \tanh ^{-1}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right )}{d f \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)}}-\frac {2 b (b \tan (e+f x))^{3/2}}{3 f (d \sec (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(b*Tan[e + f*x])^(5/2)/(d*Sec[e + f*x])^(3/2),x]

[Out]

-((b^(5/2)*ArcTan[Sqrt[b*Sin[e + f*x]]/Sqrt[b]]*Sqrt[b*Tan[e + f*x]])/(d*f*Sqrt[d*Sec[e + f*x]]*Sqrt[b*Sin[e +
 f*x]])) + (b^(5/2)*ArcTanh[Sqrt[b*Sin[e + f*x]]/Sqrt[b]]*Sqrt[b*Tan[e + f*x]])/(d*f*Sqrt[d*Sec[e + f*x]]*Sqrt
[b*Sin[e + f*x]]) - (2*b*(b*Tan[e + f*x])^(3/2))/(3*f*(d*Sec[e + f*x])^(3/2))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2610

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a*Sec[e +
 f*x])^m*(b*Tan[e + f*x])^(n - 1))/(f*m), x] - Dist[(b^2*(n - 1))/(a^2*m), Int[(a*Sec[e + f*x])^(m + 2)*(b*Tan
[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[n, 1] && (LtQ[m, -1] || (EqQ[m, -1] && EqQ[n, 3/2]
)) && IntegersQ[2*m, 2*n]

Rule 2616

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a^(m + n)*(b
*Tan[e + f*x])^n)/((a*Sec[e + f*x])^n*(b*Sin[e + f*x])^n), Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x]
 /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]

Rubi steps

\begin {align*} \int \frac {(b \tan (e+f x))^{5/2}}{(d \sec (e+f x))^{3/2}} \, dx &=-\frac {2 b (b \tan (e+f x))^{3/2}}{3 f (d \sec (e+f x))^{3/2}}+\frac {b^2 \int \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)} \, dx}{d^2}\\ &=-\frac {2 b (b \tan (e+f x))^{3/2}}{3 f (d \sec (e+f x))^{3/2}}+\frac {\left (b^2 \sqrt {b \tan (e+f x)}\right ) \int \sec (e+f x) \sqrt {b \sin (e+f x)} \, dx}{d \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}\\ &=-\frac {2 b (b \tan (e+f x))^{3/2}}{3 f (d \sec (e+f x))^{3/2}}+\frac {\left (b \sqrt {b \tan (e+f x)}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {x}}{1-\frac {x^2}{b^2}} \, dx,x,b \sin (e+f x)\right )}{d f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}\\ &=-\frac {2 b (b \tan (e+f x))^{3/2}}{3 f (d \sec (e+f x))^{3/2}}+\frac {\left (2 b \sqrt {b \tan (e+f x)}\right ) \operatorname {Subst}\left (\int \frac {x^2}{1-\frac {x^4}{b^2}} \, dx,x,\sqrt {b \sin (e+f x)}\right )}{d f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}\\ &=-\frac {2 b (b \tan (e+f x))^{3/2}}{3 f (d \sec (e+f x))^{3/2}}+\frac {\left (b^3 \sqrt {b \tan (e+f x)}\right ) \operatorname {Subst}\left (\int \frac {1}{b-x^2} \, dx,x,\sqrt {b \sin (e+f x)}\right )}{d f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}-\frac {\left (b^3 \sqrt {b \tan (e+f x)}\right ) \operatorname {Subst}\left (\int \frac {1}{b+x^2} \, dx,x,\sqrt {b \sin (e+f x)}\right )}{d f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}\\ &=-\frac {b^{5/2} \tan ^{-1}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right ) \sqrt {b \tan (e+f x)}}{d f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}+\frac {b^{5/2} \tanh ^{-1}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right ) \sqrt {b \tan (e+f x)}}{d f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}-\frac {2 b (b \tan (e+f x))^{3/2}}{3 f (d \sec (e+f x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.10, size = 181, normalized size = 1.08 \[ \frac {\csc ^3(e+f x) (b \tan (e+f x))^{5/2} \sqrt {d \sec (e+f x)} \left (-4 \sin ^2(e+f x) \sqrt {\sec (e+f x)}+6 \sqrt [4]{\tan ^2(e+f x)} \tan ^{-1}\left (\frac {\sqrt {\sec (e+f x)}}{\sqrt [4]{\tan ^2(e+f x)}}\right )+3 \sqrt [4]{\tan ^2(e+f x)} \left (\log \left (\frac {\sqrt {\sec (e+f x)}}{\sqrt [4]{\tan ^2(e+f x)}}+1\right )-\log \left (1-\frac {\sqrt {\sec (e+f x)}}{\sqrt [4]{\tan ^2(e+f x)}}\right )\right )\right )}{6 d^2 f \sec ^{\frac {7}{2}}(e+f x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Tan[e + f*x])^(5/2)/(d*Sec[e + f*x])^(3/2),x]

[Out]

(Csc[e + f*x]^3*Sqrt[d*Sec[e + f*x]]*(b*Tan[e + f*x])^(5/2)*(-4*Sqrt[Sec[e + f*x]]*Sin[e + f*x]^2 + 6*ArcTan[S
qrt[Sec[e + f*x]]/(Tan[e + f*x]^2)^(1/4)]*(Tan[e + f*x]^2)^(1/4) + 3*(-Log[1 - Sqrt[Sec[e + f*x]]/(Tan[e + f*x
]^2)^(1/4)] + Log[1 + Sqrt[Sec[e + f*x]]/(Tan[e + f*x]^2)^(1/4)])*(Tan[e + f*x]^2)^(1/4)))/(6*d^2*f*Sec[e + f*
x]^(7/2))

________________________________________________________________________________________

fricas [B]  time = 1.13, size = 766, normalized size = 4.56 \[ \left [-\frac {16 \, b^{2} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + 6 \, b^{2} d \sqrt {-\frac {b}{d}} \arctan \left (\frac {{\left (\cos \left (f x + e\right )^{3} - 5 \, \cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right )^{2} + 6 \, \cos \left (f x + e\right ) + 4\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) + 4\right )} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {-\frac {b}{d}} \sqrt {\frac {d}{\cos \left (f x + e\right )}}}{4 \, {\left (b \cos \left (f x + e\right )^{2} - {\left (b \cos \left (f x + e\right ) + b\right )} \sin \left (f x + e\right ) - b\right )}}\right ) - 3 \, b^{2} d \sqrt {-\frac {b}{d}} \log \left (\frac {b \cos \left (f x + e\right )^{4} - 72 \, b \cos \left (f x + e\right )^{2} - 8 \, {\left (7 \, \cos \left (f x + e\right )^{3} - {\left (\cos \left (f x + e\right )^{3} - 8 \, \cos \left (f x + e\right )\right )} \sin \left (f x + e\right ) - 8 \, \cos \left (f x + e\right )\right )} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {-\frac {b}{d}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} + 28 \, {\left (b \cos \left (f x + e\right )^{2} - 2 \, b\right )} \sin \left (f x + e\right ) + 72 \, b}{\cos \left (f x + e\right )^{4} - 8 \, \cos \left (f x + e\right )^{2} - 4 \, {\left (\cos \left (f x + e\right )^{2} - 2\right )} \sin \left (f x + e\right ) + 8}\right )}{24 \, d^{2} f}, -\frac {16 \, b^{2} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + 6 \, b^{2} d \sqrt {\frac {b}{d}} \arctan \left (\frac {{\left (\cos \left (f x + e\right )^{3} - 5 \, \cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right )^{2} + 6 \, \cos \left (f x + e\right ) + 4\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) + 4\right )} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {b}{d}} \sqrt {\frac {d}{\cos \left (f x + e\right )}}}{4 \, {\left (b \cos \left (f x + e\right )^{2} + {\left (b \cos \left (f x + e\right ) + b\right )} \sin \left (f x + e\right ) - b\right )}}\right ) - 3 \, b^{2} d \sqrt {\frac {b}{d}} \log \left (\frac {b \cos \left (f x + e\right )^{4} - 72 \, b \cos \left (f x + e\right )^{2} - 8 \, {\left (7 \, \cos \left (f x + e\right )^{3} + {\left (\cos \left (f x + e\right )^{3} - 8 \, \cos \left (f x + e\right )\right )} \sin \left (f x + e\right ) - 8 \, \cos \left (f x + e\right )\right )} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {b}{d}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} - 28 \, {\left (b \cos \left (f x + e\right )^{2} - 2 \, b\right )} \sin \left (f x + e\right ) + 72 \, b}{\cos \left (f x + e\right )^{4} - 8 \, \cos \left (f x + e\right )^{2} + 4 \, {\left (\cos \left (f x + e\right )^{2} - 2\right )} \sin \left (f x + e\right ) + 8}\right )}{24 \, d^{2} f}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(5/2)/(d*sec(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

[-1/24*(16*b^2*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(d/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + 6*b^2*d*sqrt
(-b/d)*arctan(1/4*(cos(f*x + e)^3 - 5*cos(f*x + e)^2 - (cos(f*x + e)^2 + 6*cos(f*x + e) + 4)*sin(f*x + e) - 2*
cos(f*x + e) + 4)*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(-b/d)*sqrt(d/cos(f*x + e))/(b*cos(f*x + e)^2 - (b*cos
(f*x + e) + b)*sin(f*x + e) - b)) - 3*b^2*d*sqrt(-b/d)*log((b*cos(f*x + e)^4 - 72*b*cos(f*x + e)^2 - 8*(7*cos(
f*x + e)^3 - (cos(f*x + e)^3 - 8*cos(f*x + e))*sin(f*x + e) - 8*cos(f*x + e))*sqrt(b*sin(f*x + e)/cos(f*x + e)
)*sqrt(-b/d)*sqrt(d/cos(f*x + e)) + 28*(b*cos(f*x + e)^2 - 2*b)*sin(f*x + e) + 72*b)/(cos(f*x + e)^4 - 8*cos(f
*x + e)^2 - 4*(cos(f*x + e)^2 - 2)*sin(f*x + e) + 8)))/(d^2*f), -1/24*(16*b^2*sqrt(b*sin(f*x + e)/cos(f*x + e)
)*sqrt(d/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + 6*b^2*d*sqrt(b/d)*arctan(1/4*(cos(f*x + e)^3 - 5*cos(f*x +
e)^2 + (cos(f*x + e)^2 + 6*cos(f*x + e) + 4)*sin(f*x + e) - 2*cos(f*x + e) + 4)*sqrt(b*sin(f*x + e)/cos(f*x +
e))*sqrt(b/d)*sqrt(d/cos(f*x + e))/(b*cos(f*x + e)^2 + (b*cos(f*x + e) + b)*sin(f*x + e) - b)) - 3*b^2*d*sqrt(
b/d)*log((b*cos(f*x + e)^4 - 72*b*cos(f*x + e)^2 - 8*(7*cos(f*x + e)^3 + (cos(f*x + e)^3 - 8*cos(f*x + e))*sin
(f*x + e) - 8*cos(f*x + e))*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(b/d)*sqrt(d/cos(f*x + e)) - 28*(b*cos(f*x +
 e)^2 - 2*b)*sin(f*x + e) + 72*b)/(cos(f*x + e)^4 - 8*cos(f*x + e)^2 + 4*(cos(f*x + e)^2 - 2)*sin(f*x + e) + 8
)))/(d^2*f)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (b \tan \left (f x + e\right )\right )^{\frac {5}{2}}}{\left (d \sec \left (f x + e\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(5/2)/(d*sec(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e))^(5/2)/(d*sec(f*x + e))^(3/2), x)

________________________________________________________________________________________

maple [C]  time = 0.70, size = 570, normalized size = 3.39 \[ \frac {\left (3 i \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticPi \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}-3 i \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticPi \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}-3 \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticPi \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}-3 \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticPi \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}-2 \cos \left (f x +e \right ) \sqrt {2}+2 \sqrt {2}\right ) \left (\frac {b \sin \left (f x +e \right )}{\cos \left (f x +e \right )}\right )^{\frac {5}{2}} \cos \left (f x +e \right ) \sqrt {2}}{6 f \left (-1+\cos \left (f x +e \right )\right ) \left (\frac {d}{\cos \left (f x +e \right )}\right )^{\frac {3}{2}} \sin \left (f x +e \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(f*x+e))^(5/2)/(d*sec(f*x+e))^(3/2),x)

[Out]

1/6/f*(3*I*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*Elli
pticPi(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(
1/2)-3*I*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*Ellipt
icPi(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/
2)-3*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticPi
(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)-3
*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticPi(((I
*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)-2*cos
(f*x+e)*2^(1/2)+2*2^(1/2))*(b*sin(f*x+e)/cos(f*x+e))^(5/2)*cos(f*x+e)/(-1+cos(f*x+e))/(d/cos(f*x+e))^(3/2)/sin
(f*x+e)*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (b \tan \left (f x + e\right )\right )^{\frac {5}{2}}}{\left (d \sec \left (f x + e\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(5/2)/(d*sec(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e))^(5/2)/(d*sec(f*x + e))^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (b\,\mathrm {tan}\left (e+f\,x\right )\right )}^{5/2}}{{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(e + f*x))^(5/2)/(d/cos(e + f*x))^(3/2),x)

[Out]

int((b*tan(e + f*x))^(5/2)/(d/cos(e + f*x))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))**(5/2)/(d*sec(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________